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What is a shell? It’s any object that’s thin enough that it can be modelled as

a 2D surface. We’ll consider shells made of elastic solid materials.

Figure 1: Left: A beautiful shell. Right: Another shell, beautiful in its own special
way.

Why study them? First, they can bend easily because they’re thin, and

thereby change shape in dramatic or interesting ways. Thus they have fascinat-

ing geometry-driven mechanics, so shell theory is a deeply mathematical subject,

but one that often involves making or looking at pretty pictures, which is a nice

combination. Second, they are used all over the place, to achieve mechanical

goals with a minimum of weight and space. Roofs and walls, musical instruments

(especially the parts that radiate sound efficiently), hulls of rockets/boats/cars,

origami/paper, fabrics/textiles, pressure vessels, ping-pong balls, leaves/flowers,

. . . etc! Leaves and other similar examples in biology are particularly interesting,

because they are ‘active’: they change shape of their own accord as they grow.

That’s very cool, but we’ll stick to non-active shells for now.

Since shells are all about shape, we’ll need to begin with some geometry. Sadly

we’ll only cover the absolute bare minimum required for our examples (or possibly

a little less).1 We’ll use the Einstein summation convention. Latin indices will

run over {1, 2, 3}, Greek indices will run over {1, 2}, and ∂α ≡ ∂/∂xα. It’s useful

to define a fixed reference state/configuration for the 2D shell; usually this is

just the state before any deformation has occurred. We inscribe it with some

1If you want to read more about differential geometry, Hobson et al ’s General Relativity:
An Introduction for Physicists is a good place to start. Marsden and Hughes’s Mathematical
Foundations of Elasticity is a good place to continue.
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coordinates x1, x2. These coordinates are best thought of as labels for ‘material

points’: each tiny physical piece of the shell is assigned a unique label, which is

just its coordinate pair (x1, x2) (imagine this being physically painted onto each

infinitesimal element).

Any realised/deformed state of the shell, can be described by specifying the

location in 3D of each material point. We will be considering only Euclidean 3D

space, so we can use Cartesian 3D coordinates and interpret them as components

of a position vector R = (X, Y, Z). We thus describe any realised shell with a

vector function of the reference coordinates: R(x1, x2). As the shell deforms, the

reference state does not change; it’s just the function R(x1, x2) that changes. See

Fig. 2.

Figure 2: Left: A reference configuration of a shell, flat in this case, with coordi-
nates xα inscribed. Right: A realised shell described by R(xα).

What might R(xα) look like? Well, for example, if θ ranges from 0 to π and

ϕ ranges from 0 to 2π, then

R(θ, ϕ) =

L sin θ cosϕ

L sin θ sinϕ

L cos θ

 (1)

describes a full sphere of radius L. If z ranges from 0 to H and ϕ ranges from 0

to 2π then

R(ϕ, z) =

L cosϕ

L sinϕ

2z

 (2)
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describes a cylinder of height 2H and radius L. Similarly,

R(x, y) =

0

y

x

 (3)

describes some portion of the Y −Z plane, depending on the ranges of x and y. (I

promise a reference state is a helpful concept, even though I didn’t specify one in

any of those examples. For one thing, the reference state is what fixes the ranges

of the coordinates xα.)

Now, the tiny vector in the realised shell between material point xα and mate-

rial point xα+dxα is dR = dxα ∂αR. Thus the realised squared distance between

two such neighbouring material points

|dR|2 = dR · dR = dxα (∂αR) · (∂βR) dxβ ≡ dxα aαβ dx
β , (4)

where we’ve defined the downstairs components aαβ of the ‘metric’ tensor field a.

At each material point, aαβ are the components of a symmetric 2× 2 matrix. For

our earlier sphere example, where x1 = θ and x2 = ϕ,

aαβ =

(
L2 0

0 L2 sin2 θ

)
. (5)

Check you can calculate this, and find the metrics for the cylinder and plane exam-

ples too (exercise)! Since ameasures distances between points, it is invariant under

rigid-body motions of the realised shell, but is affected by stretches/compressions.

Moreover, a is purely ‘intrinsic’: it measures only in-surface distances, i.e. only

those that could be measured by a short-sighted bug crawling on the surface. W

define a’s upstairs components aαβ via a matrix inverse: aαβaβγ ≡ δαγ , where as

usual δαγ is the Kronecker delta, i.e. the components of the identity matrix. I

sometimes use the symbol a−1 for the matrix with elements aαβ.

At each point on the realised surface there is a unit vector N̂ normal (perpen-

dicular) to the surface and a ‘tangent plane’ that’s tangential to the surface. The

two vectors ∂αR form a basis for the tangent plane at each point, and the normal

vector is given by

N̂ ≡ ∂1R× ∂2R

|∂1R× ∂2R|
. (6)

We can now define another key tensor field κ: the ‘second fundamental form’ or
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‘curvature tensor’.2 Its components

καβ ≡ −N̂ · ∂β∂αR. (7)

Like a, κ is manifestly invariant under rigid-body motions of the realised surface.

Also, κ is symmetric due to the symmetry of R’s mixed second derivatives. How-

ever, unlike a, κ depends on the ‘extrinsic’ geometry: bending a flat sheet into a

cylinder will change κ while leaving a unchanged.

What does κ have to do with curvature? Well, suppose R(xα) is a linear

function. This means the realised shell is a flat plane (as in one of our earlier

examples). Then the second derivatives of R are zero, so κ = 0. Thus we’ve

established that κ = 0 for flat shells!

Going further, let’s examine a surface in the vicinity of some material point p,

whose realised position is R|p. Taylor-expanding about p, we get

R = R|p + dxα (∂αR)|p +
1

2
dxα (∂β∂αR)|p dxβ + higher order terms. (8)

Now, how far is each point R from p’s tangent plane? In other words, what’s

the local ‘height function’ describing the surface, with height measured from p’s

tangent plane? Well, we just write down the displacement vector from p to R,

which is R − R|p, and then we compute the component normal to the plane,

i.e. the component along N̂ |p. Thus the height function is

h = N̂ |p · (R−R|p) (9)

= −1

2
dxαdxβ (καβ)|p + higher order terms, (10)

where we used the fact that N̂ |p is perpendicular to (∂αR)|p, and substituted in

our definition of κ. The above formula captures the essence of κ: Locally around

any p, every surface is described by a quadratic function giving the perpendic-

ular displacement from p’s tangent plane, and κ encodes the coefficients of that

quadratic.

Here’s another consequence of this local-quadratic picture: each straight line

lying in p’s tangent plane and passing through p becomes a parabola locally, when

projected along N̂ |p onto the surface (i.e. cast the line’s shadow onto the surface).

There’s a circle that locally lines up with that parabola, called the ‘osculating’

2Warning: much of the terminology commonly draped around κ is an outdated mess. The
symbol b is often used instead.
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circle; see Fig. 3. A quick sketch and a Taylor expansion reveals that, at a point

Figure 3: A paraboloid, which every sufficiently smooth surface looks like lo-
cally. Any (black) straight line in the tangent plane, projected along N̂ onto the
paraboloid, yields a (red) parabola. The parabola’s curvature 1/R is the inverse
radius of its (blue) osculating circle.

in the tangent plane a distance |dR| from p, the perpendicular distance to the

circle is |dR|2/2R to leading order, where R is the circle’s radius (please excuse

the poor choice of symbol). We equate this distance to that given by (10) so that

the circle and the parabola match to leading order, finding

1

R
=

dxα dxβ (καβ)|p
|dR|2

=
dxα dxβ (καβ)|p
dxρ dxσ aρσ

, (11)

where the second equality is just subbing in (4). Now, the above equation yields

a different 1/R for each dxα. In each case dxα corresponds to some direction (the

black line), and 1/R is called the ‘normal’ curvature in that direction. If you

plug in every possible dxα, you’ll find that 1/R takes a maximum and a minimum

value at each point; we call these the ‘principal curvatures’, κ1 and κ2 respectively.

Now, just defining vα ≡ dxα for a moment to avoid notational insanity, you can

differentiate (11) with respect to vα to find when these principal curvatures occur;

in a few lines you can (exercise!) show that they occur when vα is an eigenvector

of the matrix aγβκβα, with the corresponding eigenvalue being 1/R. Thus the

principal curvatures are just the eigenvalues of that matrix.3

Now, for any matrix, the sum of the eigenvalues is the trace, and the product

of the eigenvalues is the determinant. Thus the ‘mean’ or Germain curvature

(after Sophie Germain)

H ≡ κ1 + κ2
2

=
1

2
tr[a−1κ] , (12)

3This matrix really represents the same tensor as κ; it’s just the ‘mixed components’. However
it’s often called the ‘shape operator’, annoyingly.
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and the Gauss curvature

K ≡ κ1κ2 = det[a−1κ], (13)

where within square brackets a−1 and κ refer to matrices of aαβ and καβ respec-

tively.

Let’s get a little intuition for H and K: First, note that the sign of H is essen-

tially arbitrary, because you could always reverse the (arbitrary) direction of N̂

everywhere, flipping the sign of κ, and thus of H. In contrast, the sign of K is real

and important: it determines whether the surface is locally saddle-like, cylinder-

like, or sphere-like; see Fig. 4. If K < 0 that means the principal curvatures must

Figure 4: Surfaces with different signs of Gauss curvatureK. Arcs of the principal-
curvature osculating circles are shown in black.

have opposite signs. What can that mean, since no osculating circle can have a

negative radius? Well, we use the word ‘radius’ slightly loosely, defining it to be

negative if N̂ points towards the circle’s centre, and positive otherwise. Thus

K < 0 corresponds to the two principal osculating circles curving in opposite

senses to each other, like a saddle. If either principle curvature is zero (meaning

the corresponding osculating circle is just a straight line), then K = 0 necessarily.

Finally, note that H = 0 is only possible if K < 0 (or if the shell’s completely flat).

It’s straightforward to see that H is an extrinsic quantity: Imagine bending

a flat sheet of paper into half a cylinder. The flat sheet had H = 0, while the

half-cylinder has one non-zero principal curvature (Fig. 4 center), so has H ̸= 0.

Thus H has detected the deformation even though the in-material distances be-

tween material points didn’t change, i.e. the metric a didn’t change; it can’t have,

because to a good approximation paper can’t be stretched (it’ll tear first). Such

constant-a deformations are called ‘isometric’, and two surfaces are said to be

‘isometries’ of each other if they’re related by such a deformation.
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(Exercise: Given a flat sheet R(x, y) = (x, y, 0), write down an R(x, y) that

would correspond to the sheet being isometrically wrapped around a cylinder of

radius L. Compute aαβ to show that it’s unchanged by the deformation.)

In contrast, K is intrinsic; to change K you have to stretch or compress the

material tangentially, changing the in-material distances between material points.

In fact, K can be computed directly just from the metric, without writing down κ

at all!4 This result is called Gauss’s Theorema Egregium. It’s not at all obvious,

and in some ways it’s pretty counter-intuitive. However, it should hopefully be

fairly familiar from everyday life that you can’t deform any one of the surfaces in

Fig. 4 into any of the others without stretching. This fact has frustrated mapmak-

ers and gift wrappers for centuries: a flat sheet of paper is essentially inextensible,

and has K = 0, so cannot be wrapped onto the K > 0 surface of a sphere. As

a result, highly distorting ‘projections’ must be used to draw flat maps of the

Earth’s curved surface.

Figure 5: Left: A globe (K > 0) that we’d like to map onto a flat sheet (K = 0).
Maybe to achieve this we can just wrap the sheet around it without stretching?
Right: Wrapping not going according to plan. Sad!

Here are some more non-obvious facts:

1. The tensors a and κ are not completely independent; there are three scalar

‘Gauss–Codazzi’ equations that they must satisfy if they are to correspond to

a real surface. These constraints just encode the requirement that the (third)

mixed partial derivatives of R(xα) are symmetric; if they are satisfied, a and

κ are termed ‘compatible’. One of the three equations ends up equating the

4The formula is a nonlinear mess involving second derivatives of aαβ . It’s called the Brioschi
formula.
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K = det[a−1κ] with an expression involving only derivatives of the metric

a, and thus encapsulates (and proves) Gauss’s Theorema Egregium.

2. If I give you an a field and a κ field, you can in principle work backwards to

work out the shape of the corresponding surface. In other words, together

a and κ fully determine a surface up to rigid-body transformations (roughly

speaking at least; there can be topological complications). This is sometimes

called the fundamental theorem of surface theory, or the Bonnet theorem.

Now, deformations of an elastic shell cost energy. This energy E is given as

an integral over the reference-state surface: E =
∫
W (R(xα))dA, where W is

some ‘energy density’. Due to the Bonnet theorem I just mentioned, a and κ

actually fully describe the shape of a surface, so we can replace W (R(xα)) with

some W (a, κ). The standard W is

W =
Y

8(1− ν2)
Q[ā−1(a− ā)] +

D

2
Q[ā−1(κ− κ̄)] , (14)

where the quadratic operator Q(τ) ≡ νtr(τ)2 + (1− ν)tr(τ · τ). Here ν is Poisson

ratio, while Y ≡ Et and D ≡ Et3/(12(1 − ν2)) are respectively the stretching

modulus and bending modulus (‘flexural rigidity’) for Young’s modulus E. The

parameter t is the thickness of the true 3D shell, which we otherwise pretend is

just a 2D surface. The tensor fields ā and κ̄ are the ‘preferred’ or ‘target’ metric

and curvature tensor respectively. Why those names? Because the energy is zero

if a = ā and κ = κ̄, so they are the values of a and κ that the shell ‘wants’ to

have; thus they are usually just the a and κ of the reference state.

Rewriting W very schematically, it looks like

W ∼ t[a− ā]2 + t3[κ− κ̄]2 . (15)

so deviations a−ā are only picked up by the first term in the energy, and deviations

κ − κ̄ are only directly picked up by the second term (though remember that a

does secretly know all about Gauss curvature due to the Theorema Egregium).

The first term is called the stretch term, because it measures deviations in in-

material distances from their preferred values, which is what stretch/compression

is. The second term is called the bend term because it is affected by bending,

i.e. curvature changes. Crucially the stretch term ∝ t, while the bend term ∝ t3.
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Since in shells, t is small (in some appropriate sense), bend is much cheaper than

stretch; this fact governs almost all of shell mechanics. It ensures that a is almost

always close to ā in a shell. Let’s now define the strain tensor ε ≡ (a− ā)/2 and

the bend tensor β ≡ κ− κ̄, so W becomes

W =
Y

2(1− ν2)
Q[ā−1ε] +

D

2
Q[ā−1β] . (16)

We can now view the Theorema Egregium more optimistically than mapmak-

ers do: We can engineer strong shells, if we arrange their shape such that a certain

deformation will require changingK; then it will require changing a, and thus pay-

ing expensive stretch energy, which the shell will resist strongly! We all do this

in our daily lives. Holding a slice of pizza, for example, we tend to pinch it into

a partial cylinder, imbuing it with ‘curvature-induced rigidity’: The undeformed

slice has K ≈ 0 since pizzas are (usually!) baked while planar, and pinching is

easy because it doesn’t change K, so costs only pure bend energy. For a pinched

slice to then droop excessively under gravity, it would have to stretch to form a

K < 0 saddle-like shape, whereas an un-pinched slice can easily droop via pure

bend into a K = 0 partial cylinder; see Fig. 6.

Figure 6: Left: A slice drooping via cheap pure bend. Right: Rigidified by
curvature, this slice cannot droop without expensive stretch, so it droops much
less.

How do we use (16) to predict a shell’s shape in a statics problem? Well, as

usual in physics, we minimize energy to find equilibrium states. (More generally

one could also write down a kinetic energy, and an action, and find equations of

motion . . . and so on.) Our energy will be E =
∫
W (R(xα))dA , plus some extra

term that corresponds to a load (force).

In simulations we can minimise our energy in its full glory. For theory work,
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the game is to throw away lots of unimportant terms in the energy to get some-

thing tractable. Which terms to chuck is problem dependent, not obvious, and

sometimes tedious to work out. Different possibilities correspond to the huge zoo

of different ‘shell theories’ with names like Föppl–von Kármán theory, Donnell-

Mushtari-Vlasov theory, shallow-shell theory, moderate-rotation theory, mem-

brane theory, . . . we won’t worry too much about the names or the term chucking

process; we’ll just get on with solving problems.

1 Examples

1.1 A cantilever plate

Figure 7: What a plate looks like. A ‘paper plate’ is this thing; ask anyone.

We’re going to start with plates, meaning shells whose zero-energy state is

planar. Thus κ̄αβ = 0. The reference state will be a flat rectangle, inscribed

with Cartesian coordinates x1 = x, x2 = y. Thus āαβ is just the identity matrix.

We’ll describe the deformation in terms of small displacement fields u(x, y) =

(u(x, y), v(x, y)) and w(x, y) respectively in the tangential and normal directions
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to the reference state, so

R(x, y) =

xy
0

+

uv
w

 , (17)

where that first term is just the R of the reference state.

We’ll do ‘linear elasticity’, meaning we assume that perturbations from the

reference state are small enough that we can take ε and β to be linear in displace-

ments and their derivatives, with higher-order terms negligible.

The correct linear expressions for a plate are

εαγ =
1

2
(∇αuγ +∇γuα) , (18)

βαγ = −∇α∇γw. (19)

The first line should look familiar from standard 3D elasticity. The second should

remind you of (7), our definition of κ. Indeed, we must have N̂ = (0, 0, 1)+ terms

first order in displacements and their derivatives, and thus the βij above comes

quickly from plugging (17) into (7) and working to leading order (exercise). Now

we can plug ε and β into (16) to get

W =
Y

2(1− ν2)
Q[(∇αuγ +∇γuα) /2] +

D

2
Q[∇α∇γw] . (20)

Starting to look tractable!

For our first example, we’re going to look at a ‘cantilever’; see Fig. 8, The

end of the plate at x = L will be unconstrained, while the x = 0 end will be

‘clamped’, meaning it can neither move nor rotate. Finally, I’ll assume a uniform

load force-per-unit-length is applied along the free end, in the normal direction.

Our setup allows us to make a huge simplification: translational invariance in

the y direction (i.e. nothing depends on y).5 Then, by mirror symmetry, v = 0.

Thus, representing derivatives with respect to x by primes, the energy density

(20) becomes

W =
Y

2(1− ν2)
(u′)2 +

D

2
(w′′)2. (21)

5Even in this problem translational invariance is in truth broken near the shell’s boundaries
unless ν = 0, but we’ll ignore that.
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Figure 8: A plate cantilever (white) is ‘built in’ / clamped at its left-hand edge,
and loaded at its right-hand edge by a load (red).

To get an energy, we integrate W over area, but since W doesn’t depend on y, we

can just do the y-integral trivially, leaving a single integral over x. That integral is

the plate’s elastic energy, but we need to add a term to account for the load force.

Let’s make the standard assumption that the load doesn’t change as deformation

occurs (usually a very good approximation); for example the force could be the

weight of a wire glued along the free edge. In that case the gravitational potential

energy would be Fw(L) for a total force F , and something like this almost always

the form used for any applied force in continuum mechanics; it’s minus the work

done by the force as the deformation occurs. Thus the total energy of the system

is

E = Fw(L) + S

∫ L

0

( Y

2(1− ν2)
(u′)2 +

D

2
(w′′)2

)
dx, (22)

where S is the plate’s length in the y direction. We just need to minimise this

over all fields u and w, subject to the constraints implied by the ‘clamping’ BCs

at x = 0, which are u(0) = w(0) = w′(0) = 0. The way I think about the w′ = 0

BC is that in reality the plate extends to x < 0, it’s just ‘glued down’ flat there,

so has w′ = 0 there, so we need the w′ = 0 BC to avoid a discontinuity in w′ at

x = 0, which would yield a discontinuous normal vector, and hence infinite bend

energy.

We’re ready to minimise E, which we do via standard calculus-of-variations

handle turning: We perturb about some already-deformed state by making the
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substitutions u → u + δu and w → w + δw, and require that δE = 0 to leading

order for all δu and δw. When that holds, the deformed state is a stationary point

of the energy, and we trust that it’s a minimum. We only consider perturbations

that satisfy δu(0) = δw(0) = δw′(0) = 0, because any others are forbidden by

our boundary conditions; the system can’t explore them so neither should we. To

leading order,

δE = Fδw(L) + S

∫ L

0

( Y

1− ν2
u′δu′ +Dw′′δw′′

)
dx (23)

= Fδw(L) + S
[ Y

1− ν2
u′δu+Dw′′ δw′

]L
0
− S

∫ L

0

( Y

1− ν2
u′′ δu+Dw′′′ δw′

)
dx

= Fδw(L) + S
[ Y

1− ν2
u′δu+Dw′′ δw′ −Dw′′′ δw

]L
0
− S

∫ L

0

( Y

1− ν2
u′′ δu−Dw′′′′ δw

)
dx

where we’ve integrated by parts to get the second line, then done it again to

get the third line. The boundary terms between square brackets automatically

evaluate to zero at x = 0 due to our BCs there, so

δE/S =
(
Fδw/S+

Y

1− ν2
u′δu+Dw′′ δw′−Dw′′′ δw

)∣∣∣
x=L

−
∫ L

0

( Y

1− ν2
u′′ δu−Dw′′′′ δw

)
dx.

We require that the above δE = 0 for all BC-satisfying δu and δw.

Let’s first consider perturbations that have δu(L) = δw(L) = δw′(L) = 0, for

which the boundary terms are zero, leaving just the integral. Then, since δu and

δw in the integrand are arbitrary and independent, δE = 0 requires that their

coefficients are zero everywhere, yielding the Euler-Lagrange equations

u′′ = 0, (24)

w′′′′ = 0. (25)

Now that we know the integral vanishes all by itself, let’s consider more general

perturbations, having arbitrary boundary values δu(L), δw(L), and δw′(L). Since

these three quantities are independent from each other, δE = 0 requires that their

coefficients are separately zero. Thus we read off

u′(L) = 0, (26)

F/S −Dw′′′(L) = 0, (27)

w′′(L) = 0. (28)
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These are the BCs for our Euler-Lagrange equations at x = L. BCs that emerge

naturally in this way from a variational principle are inventively called ‘natural’

BCs.

It’s straightforward (exercise!) to solve our Euler-Lagrange equations and

impose our BCs to find

u = 0, (29)

w =
F (x3 − 3Lx2)

6DS
. (30)

The resulting shape is plotted in Fig. 9.

Figure 9: The normal displacement w (and thus the physical shape), of a cantilever
plate rectangular plate subjected to load at the free edge. The vertical scale was
chosen arbitrarily.

Ok, but what are the key takeaways? First, the bend energy contained sec-

ond derivatives, which led to a fourth-order equation; almost all shell problems

have this feature. Second, to leading order we only get normal displacement when

we load in the normal direction — unsurprising but worth pointing out. Third,

w ∝ 1/t3 because of the bending modulus D in the denominator, so even a small

force generates a very large displacement! That t3 is inherited from the bend

energy, which is indeed cheap, as discussed earlier. The geometric point is that

in this problem the load force can deform the plate isometrically i.e. without any

stretch; the plate can only resist with weak bending forces, so it has to bend a lot

to support the load!

Exercise: Remove the load force at the end of the cantilever. Instead, consider

a cantilever with a significant weight, add an appropriate term to the energy, and

minimise to find the displacements that occur as the cantilever deforms under its

own weight.
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1.2 A simply supported plate

Let’s now solve a more complicated problem, without translational invariance.

We’ll again load a rectangular plate in the normal direction, but this time we’ll

apply some force f(x, y)dA to each area element. For the sake of variety, let’s

apply ‘simply supported’ boundary conditions on all four edges. This means that

displacements all along the boundary are constrained to be zero (uα = w = 0),

but rotations are free (the edges are ‘hinged’, if you like). You might think this

latter freedom means ∇w is completely unconstrained on the boundary, but that

can’t be quite right, because if w = 0 along the boundary, then the along-the-

boundary component of ∇w must also be zero; however the other component of

∇w is indeed unconstrained.

Picking up from (20), the total energy is

E =

∫ (
Y

2(1− ν2)
Q[(∇αuγ +∇γuα) /2] +

D

2
Q[∇α∇γw] + fw

)
dA, (31)

and our task is to minimize E over all possible u and w that satisfy uα = w = 0

on the boundary. As a first step, note that differentiating Q[ ] with respect to its

argument yields

∂Q[τ ]

∂ταγ
= 2ν tr(τ)δαγ + 2(1− ν)ταγ ≡ 2Lαγ[τ ]. (32)

Thus if we define the symmetric tensors

N =
Y

1− ν2
L[ε], (33)

M = DL[β], (34)

our energy variation becomes

δE =

∫ (
Nαγ∇αδuγ −Mαγ∇α∇γδw + fδw

)
dA. (35)

As before, we integrate the δuγ term by parts once, and the δw term twice, where

‘by parts’ means we apply the following identity (which follows quickly from the

2D divergence theorem):∫
p · ∇q dA =

∮
q p · n̂ ds−

∫
q∇ · p dA, (36)
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where s is arc length along the boundary, and n̂ is the unit vector that’s normal

to the boundary curve but tangential to the shell, and points outward away from

the shell. We get (exercise)

δE =

∮ (
Nαγδuγ−Mαγ∇γδw+δw∇γMαγ

)
n̂α ds+

∫ (
−δuγ ∇αNαγ−δw∇α∇γMαγ+fδw

)
dA.

Now, looking at the boundary term, we see that Nαγn̂α ds has the interpreta-

tion of a force on the boundary element ds, because it dots with a displacement

to give an energy change. For this reason, Nαγ is a kind of stress tensor; it’s

called the ‘membrane stress’ because it relates to stretch but not bend. For an

analogous reason, Mαγ should probably be called the ‘torque tensor’ or ‘moment

tensor’, but sometimes it’s called the ‘stress-couple’ tensor.

Anyway, making exactly the same kind of argument as in the previous section,

we can read off the Euler-Lagrange equations from the area integral:

∇αNαγ = 0, (37)

∇α∇γMαγ − f = 0. (38)

Then our δuα = δw = 0 BCs ensure that all boundary terms are zero except

that involving the component of ∇δw perpendicular to the boundary; that com-

ponent is unconstrained, so its coefficient must be zero, yielding the natural BC

n̂αMαγn̂γ = 0, often written Mnn = 0. Physically, this BC means no external

bending torque acts perpendicular to the boundary.

(Note that (37) is actually two scalar equations. It’s often written as∇·N = 0;

it comes up constantly in both 3D and shell elasticity. It’s often solved by introduc-

ing an ‘Airy stress function’ ψ that’s strongly analogous to the electric potential

in electrostatics: If the domain is simply connected (topology!) then (37) implies

that Nαγ = δαγ∇2ψ−∇α∇γψ (it’s easy to check that this form solves the equation

— exercise!). Then the problem is simplified, because ψ is just a scalar field, which

is easier to solve for than the vector u. However, ψ isn’t completely arbitrary:

there’s a ‘compatibility’ condition on it, encoding the requirement that you could

back out a genuine u from it, i.e. a u whose mixed derivatives are symmetric.

If this sounds a lot like the Gauss-Codazzi equations discussed earlier: yes, it’s
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essentially the same thing.)

Anyway, we should now substitute in the definitions of N and M , and then

ε and β, to get equations we can solve for the displacements. I’m not going

to bother with the stress one, because it’s clearly linear in derivatives of u so,

(unsurprisingly) its solution in this problem is just u = 0, due to the homogeneous

BCs. However, (38) becomes

D∇2∇2w + f = 0 (39)

The ‘biharmonic’ operator ∇2∇2w is sometimes written as ∇4w (or ∆2w if ∆ is

used for the Laplacian). (39) is the core equation of plate elasticity. It’s not a

million miles away from the Poisson equation, and similar solution techniques are

possible.

We also have our BC w = 0 still, which implies that all along-boundary deriva-

tives of w are zero. Bearing that in mind, our natural BC Mnn = 0 becomes a

∇2w = 0 BC.

One way to solve our problem is to Fourier-expand w and f :

w(x, y) =
∞∑

m=1

∞∑
n=1

wmn sin
(mπx

A

)
sin
(nπy
B

)
, (40)

f(x, y) =
∞∑

m=1

∞∑
n=1

fmn sin
(mπx

A

)
sin
(nπy
B

)
, (41)

where I’ve assumed our plate has length A along x and B along y. You can easily

check that such a w satisfies all of our BCs. Plugging into (39), differentiating

termwise, and using orthogonality of the sine basis functions, one quickly finds

wmn =
fmn

π4D

(
m2

A2
+
n2

B2

)−2

. (42)

As a result, we again find w ∝ 1/t3, coming from the fact that the plate bends

but does not stretch (to leading order).

If, just for example, we have a point load at the center of the plate f(x, y) =
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Fδ(x− A/2)δ(y −B/2), then one finds in the usual Fourier-series way that

fmn =
4F

AB
sin(mπ/2) sin(nπ/2), (43)

which can be plugged straight into (42). Then (40) gives the solution plotted in

Fig. 10.

Figure 10: The normal displacement w (and thus the physical shape), of a simply
supported rectangular plate subjected to a point load. The vertical scale was
chosen arbitrarily.

Exercise: The rotationally symmetric Green function f for the 2D Laplacian

satisfies ∇2f = δ(2)(r), and has the general form f = log(kr)/(2π), where the

constant k is arbitrary. The rotationally symmetric Green function g for the 2D

biharmonic satisfies ∇2∇2g = δ(2)(r). Find the general form of g. Hint: The 2D

Laplacian acts as ∇2g = (1/r)∂r(r∂rg).

1.3 Axisymmetrically deforming a cylinder

In the cantilever plate example, we applied a load at a free edge of the shell, in

the direction normal to the shell. Let’s now do the same, except with an initially-

curved shell, rather than an initially-flat (plate) one. Specifically let’s take the

undeformed shell to be a cylinder, and let’s apply a radial force f ds to each little

element of one boundary; see Fig. 11. (The main reason I chose to use a cylinder

for this example is that we can still use Cartesian coordinates (x, y). This means

that all our derivatives can be partial derivatives, and we don’t need to get into

more advanced topics such as covariant differentiation.)
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Figure 11: A cylinder (left) is deformed under a radial load f applied at a free
boundary. Surprisingly, the resulting radial displacement is inwards in some re-
gions and outwards in others!

The reference state will be a cylinder of radius R, inscribed inscribed with

Cartesian coordinates x1 = x running azimuthally, and x2 = y running axially.

Thus the azimuthal and axial displacements are u1 ≡ u and u2 ≡ v respectively,

while the normal (radial) displacement is w again. The lower boundary of the

cylinder will be at y = 0. As before, ā is just the identity matrix, but now

κ̄ =
1

R

(
1 0

0 0

)
. (44)

This introduces a key new term in our linear-elastic strain expression, which be-

comes

εαγ =
1

2
(∇αuγ +∇γuα) + w κ̄αγ. (45)

That final term, which was zero for a plate, is the key difference between a plate

and a curved shell: in a curved shell, normal displacements induce strain at leading

order. This is pretty intuitive, if you think about a circle on the reference cylinder

increasing its radius by an amount ∆R; the length of the circle has to increase by

2π∆R, corresponding to an azimuthal (‘hoop’) strain of ∆R/R.

What about our expression for β, is that also different now? In truth, yes, but

we’re going to keep the same expression (19), because the other terms would turn

out to be negligible in our problem.

What about forcing? Well, we’re just going to load radially at the free bound-
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ary y = 0, so the only load term in the energy is

−
∮
y=0

fw ds. (46)

We’re ready to crank the calculus-of-variations handle (exercise!). It’s similar

to the last time we did this. One extra term appears in the Euler-Lagrange

equations, which become

∇αNαγ = 0, (47)

−∇α∇γMαγ +Nαγκ̄αγ = 0. (48)

Reading off the BCs at the free boundary is a bit subtle, because the along-

boundary component of ∇w is not independent of w on the boundary. We men-

tioned this subtlety earlier, but we have to do more to get the right answer this

time, because the boundary displacements are unconstrained: We decompose∇δw
into its components, ∇δw = x̂∇xδw + ŷ∇yδw. The former term is involved in a

1D integration by parts that we must perform along the closed boundary curve:∮
Myx∇xδw ds =

∮
Myx

dδw

ds
ds =

∮
−δwdMyx

ds
ds =

∮
−δw∇xMyx ds, (49)

where Myx is just a more readable way of writing M21; accordingly there is no

implicit Einstein summation happening anywhere in (49). After that the free-

boundary BCs can all be read off straightforwardly:

Nyx = Nyy = 0, (50)

Myy = 0, (51)

2∇xMxy +∇yMyy + f = 0. (52)

At the other boundary we can have clamped BCs as before, but they aren’t going

to matter.

Let’s now assume that the load force and the deformation are perfectly ax-

isymmetric. Then all fields are functions of y only; we’ll use primes to denote

derivatives with respect to y. Furthermore, u = 0 by clockwise ↔ anticlock-

wise symmetry. As a result, N and M are diagonal. With these simplifications,

divN = 0 becomes N ′
yy = 0, so then (50) tells us Nyy = 0 everywhere! (This result

is quite special to the free-boundary case. The other key features of our results
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are more general.) Thus, subbing the ε definition into Nyy, we find v′ = −νw/R.
With this relation, and the definition of M , (48) becomes

DR2w′′′′ + Y w = 0. (53)

Compare to the cantilever equation w′′′′ = 0! Note: An easier way to get to this

point would have been to impose translational invariance in the energy functional

before minimising, as we did for the cantilever.

Now, (53) is linear and has constant coefficents, so is solved by exponentials.

Subbing an exponential exp(iky) for w, we find that the possible wavevectors

satisfy k4 = −Y/(DR2). We thus see that our solution has a characteristic length

scale l = (DR2/Y )1/4 ∝
√
Rt; a key feature!

The possible k values sit at the corners of a square in the complex plane:

k = (±1± i)/
√
2l2. Thus we are left with

w = c1 e
iy(1+i)√

2 l + c2 e
iy(−1+i)√

2 l + c3 e
iy(1−i)√

2 l + c4 e
iy(−1−i)√

2 l , (54)

for some arbitrary constants c1, c2, c3, c4. The final two terms grow into the bulk

of the cylinder; we discard those, because we assume the non-loaded boundary is

a distance ≫ l from the loaded boundary, and then any sensible BC applied at

the non-loaded boundary would effectively set c3 = c4 = 0. Our two remaining

free-end BCs (51) and (52) are just w′′ = 0 and w′′′ = f . Imposing these yields

w =

√
2fl3

D
exp

(
− y√

2 l

)
cos

(
y√
2 l

)
, (55)

which is plotted in Fig. 12. Note: the solution doesn’t just decay, it also os-

cillates ! Some kind of ‘flaring’ occuring near the loaded end is very intuitive,

but that the deformation is oscillatory rather than monotonic is pretty counter-

intuitive I think. It means that even if f acts radially outwards, so the boundary

circle moves outwards and goes into tension, nearby bits of shell move radially

inwards and thereby go into compression!

I want to highlight how different the shell case is from the plate cases: Here the

solution exhibits a characteristic short6 length scale l ∝
√
t, decays away from the

boundary (AKA has ‘boundary-layer’ character), is oscillatory, and has w ∝ t−3/2

6That the length scale l ≪ R is what self-consistently justifies our use of the Hessian form
of β, (19): speaking loosely, a short length scale means gradients are large.
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Figure 12: The normal displacement w(y) of a cylinder loaded radially at a free
boundary. The scales were chosen arbitrarily.

rather than t−3. These differences are all consequences of that single extra term

in the strain (45), which a shell has and a plate doesn’t!

Note also that since t is small, the w ∝ t−3/2 scaling means this shell resists the

load far more effectively than a cantilever would! This is exactly the curvature-

induced rigidity we mentioned before in the context of pizza: the curved shell is

much more rigid than a flat plate, because to deform it the load has to stretch

it. Indeed, stretch and bend are competing (‘trading off’) in the boundary layer,

which is the key to the thickness scalings that emerged. In contrast, the plates

deformed isometrically via pure bend.7

Another, more subtle difference is that applying a load to a curved shell in

the normal direction induces both normal and tangential displacements to leading

(linear) order. We saw this earlier: v′ was not zero!

All these differences make shells much more subtle and difficult to study than

plates. On the flip side, it also makes them more interesting! In any case, their

rigidity makes them more practically useful, so they must be studied whether we

like it or not!

7Curvature-induced rigidity would eventually kick in to some extent in a plate problem like
that of Sec. 1.2, for large enough deformations; we didn’t see this because we were doing linear
elasticity. For a plate, curvature-induced rigidity is a second-order (and hence rather weak)
effect; Föppl–von Kármán plate theory captures it.

22



1.4 Cylinder buckling under axial compression

We’ll cover a lot of ground quite fast in this section, with some glossing; if it feels

that way, it’s because it is that way!

For a moment let’s consider an energy E that’s a function of only two degrees of

freedom (physical quantities), p and q, rather than the infinitely many degrees of

freedom that a displacement field has. In an energy landscape E(p, q), equilibria

correspond to stationary points. Stable equilibria correspond to minima of E.

Unstable equilibria correspond to maxima or saddle points.

Consider such an energy landscape that varies over time, (e.g. due to a load

force increasing). Suppose a physical system lies in a minimum (stable equilib-

rium). It will stay trapped in that ‘bowl’ if the minima just moves around or

changes shape (Fig. 13a-b). However, a mechanical instability occurs if the mini-

mum ceases to be a minimum, and instead becomes a maximum or a saddle point;

then the system will immediately ‘roll downhill’ to lower its energy (Fig. 13c-d).

(a) (b) (c) (d)

Figure 13: Example of energy landscape evolution. (a) An energy E(p, q) initially
has a minimum (stable equilibrium) p = q = 0. (b) The physical system (green
ball) stays in the minimum, even as the energy landscape changes. Eventually the
energy landscape reaches a critical/threshold case (c), just between stability and
instability. Pushing even infinitesimally beyond this case, the landscape looks like
(d) after zooming in, so the p = q = 0 equilibrium has become unstable, and the
physical system will move to lower its energy. (Pictures not to scale.)

Let’s get slightly more mathematical: At any equilibrium, ∇E = 0, so pertur-

bations δp and δq about that equilibrium cause energy changes only of quadratic-

or-higher order in δp and δq. At a stable equilibrium, any such perturbations

specifically cause energy increases. An instability is when the energy landscape

changes such that (in at least one direction) perturbations can decrease the en-

ergy. The moment of crossover in behaviour — the threshold case, if you like — is

the moment where perturbations can just manage to cause zero change in energy

to quadratic order (Fig.13c). We say the instability occurs at this threshold.

This recipe for finding instabilities extends perfectly to the infinite-dimensional

case, where the perturbations are deformation fields: If you have a family of equi-
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libria (‘base states’), perturb them, and write down the resulting quadratic-in-

perturbations δE. Ask “do all nonzero perturbations make δE > 0?” When the

answer changes from “yes” to “no, some make δE = 0”, you have an instability.8

Now, here’s something a little subtle: If you stare for a while at Fig. 13, or

think for a while about quadratic forms, you’ll realise that at the instability the

quadratic δE must be stationary at the perturbed states that have δE = 0.9 This

means that at instability there’s a whole ‘direction’ in perturbation space that you

can move along at zero energy (the ‘valley’ in Fig. 13c)! That is in fact a more

helpful recipe for finding an instability: Find the first moment that the quadratic

δE is stationary at a non-zero perturbation, i.e. its (functional) derivative is zero.

This way, in the infinite-dimensional case, finding the instability involves solving

the Euler-Lagrange equations associated with the quadratic δE functional. Those

equations are linear, so this is a ‘linear stability analysis’.

So, let’s find the instability that occurs when you squash a cylinder along its

axis with a force f . In a careful experiment, the result might look something like

Fig. 14a-b, but you’ve probably seen pretty similar things if you’ve ever squashed

an aluminium can. Fig. 14c shows a sketch of the setup; the x coordinate runs

azimuthally, while y runs axially. We’ll assume the pre-instability base state to be

a very simple and intuitive one: The stress is uniform and purely axial, and there

are no bending forces.10 This is always true away from the shell boundaries, and

(I think) it’s true everywhere when squashing between frictionless plates. Vertical

force balance immediately gives the base-state membrane stress

N0 =
f

2πR

(
0 0

0 1

)
. (56)

Furthermore, the actual shape of the cylinder is almost unchanged until instability

8Actually, in some cases there will be perturbations that always leave the energy unchanged
to quadratic order (usually due to symmetries; see ‘Goldstone modes’). Since, for these per-
turbations, the energy behaviour doesn’t switch character as you vary (e.g.) the load on the
system, their presence doesn’t indicate an interesting instability.

9This is essentially the same as the fact that, if we have a positive semi-definite matrix M ,
the quadratic form vTMv can only equal zero if v = 0 or if v is an eigenvector of M with
eigenvalue zero. And those possibilities are exactly the vectors that make the quadratic form
stationary!

10A ‘membrane’ state is the name given to a state where bending is neglected.
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Figure 14: Left: A cylindrical shell, about to be squashed vertically (axially).
Middle: The load force increases until a sudden instability occurs and the shell
jumps to another shape. Usually the shape on the right would be seen only very
briefly, en route to some less regular shape; here the nice pattern has been pre-
served with a trick (can you guess what’s inside the cylinder to achieve this?). This
‘Yoshimura’ pattern also comes up in origami theory! Photos from Seffen+Stott,
2014. Right: Sketch of the setup.

occurs, so we can take the base-state curvature tensor to be

κ0 = κ̄ =
1

R

(
1 0

0 0

)
. (57)

To probe the stability of this base state, we perturb with deformations δu(x, y)

and δw(x, y) in the tangential and normal directions respectively. What are the

resulting changes in strain ε and bend β? Well, I’m going to ask you to take my

word for it that the only important terms for this problem are the following:

δεαγ =

δε1

(∇αδuγ +∇γδuα) /2 + κ0αγ δw+

δε2

(∇αδw)(∇γδw)/2, (58)

δβαγ = −∇α∇γδw. (59)

(The above expressions are just found by throwing away a bunch of unimportant

terms from the exact (messy) expressions, which you can peruse in the Appendix.)

The bend is just second derivatives of normal displacement, which is familiar for

shells and plates. The strain has a linear in-plane contribution that’s familiar from

non-shell elasticity, and also a linear-in-normal-displacement term that’s always

present for curved shells; we saw it in Sec. 1.3. The final (nonlinear!) term
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in the strain is new, and encodes the key mechanism of shell buckling: normal

displacements can relieve tangential compression. I reserve the word ‘buckling’ for

instabilities driven by this mechanism.

This effect is quite intuitive: once the loading plates start squashing, the shell

is a little too long to comfortably fit between them (hence compression), but

it can ‘waste’ some of this ‘excess length’ with oscillatory normal deformations,

allowing it to relax somewhat. However, other terms in the energy penalise such

deformations, so there is competition, and the perturbations are only favoured

when the compressive force f gets large enough; the moment this occurs is our

buckling instability.

Now, we need to expand our energy to quadratic order in perturbations. This is

just a matter of plugging ε = ε0+δε and β = β0+δβ into (16), using (32), (58), and

(59), and throwing away higher-than-quadratic terms. Also, Y L(ε0)/(1 − ν2) =

N0, the base-state membrane stress. Thus (exercise!), we arrive at

δE =

∫ [
Y

2(1− ν2)
Q(δε1) +

D

2
Q(δβ) + tr(N0 δε2)

]
dA. (60)

Now, remember that we’re looking for the first moment (as f increases) that

the functional derivative of δE can equal zero at nonzero δu, δw. So we should

solve the Euler-Lagrange equations! To find them, we perturb δu and δw (yes,

perturbations of perturbations, e.g. δδw!) and do standard calculus-of-variations

handle turning (exercise), yielding

∇α(δN
1)αγ = 0, (61)

D∇2∇2δw + tr
(
κ0 δN1

)
−∇ ·

(
N0∇δw

)
= 0, (62)

where δN1 ≡ Y
1−ν2

L(δε1).

Now we employ a common trick that’s a lot like using a scalar potential in

electromagnetism: Introduce a scalar ‘Airy stress function’ δψ, and demand that

δN1 = Λδψ, where the differential operator Λαγ ≡ δαγ∇2 − ∇α∇γ. Doing so,

(61) is immediately satisfied, because of symmetry of mixed partial derivatives.

However, another equation emerges: because we’re not solving for δu directly, we

need to make sure that our δψ will yield a δN1 that will yield a δε1 that will

correspond to a genuine displacement δu. In practice this means requiring that

mixed partial derivatives of δu are symmetric, and after some tedium11 that boils

11First, invert the stress-strain relation to get Y δε1 = (1 + ν)δN1 − νtr(δN1)I. (To do so
slickly, take the trace of the expression δN1 to find tr δε1 = (1−ν) tr δN1/Y , and sub that back
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down to

∇2∇2δψ − Y Λαγ(κ
0
αγ δw) = 0. (63)

The above requirement is sometimes called ‘geometric compatibility’. Really it’s

just an incremental version of the Gauss compatibility equation discussed earlier

for surfaces in general.

Now we have only two scalar equations to solve, (62) and (63). They’re lin-

ear and have constant coefficients, so the solutions (‘buckling modes’) are just

exponentials: (
δw

δψ

)
=

(
A

B

)
ei(kxx+kyy). (64)

Plugging this into (62) and (63), along with N0 and κ0, we get algebraic equations

to solve for the ratio A/B and the force f . Interestingly, f only depends on kx

and ky via the combination k2◦ ≡ (k2x + k2y)
2/k2y:

f = 2π
Y +Dk4◦R

2

k2◦R
. (65)

So when does the instability occur? At the smallest force f that allows these

solutions to exist; so we minimise the f expression over k◦, at long last finding

the classic buckling threshold

f⋆ = 4π
√
Y D. (66)

with the corresponding k4◦⋆ = Y/(DR2).

Some things to note: (1) The critical k◦⋆ corresponds to infinitely many pairs

(kx, ky); in fact those pairs form a ‘Koiter circle’ in k-space, and the lovely di-

amond buckling pattern in Fig. 13 arises from several of these modes going un-

stable simultaneously. (2) The critical force f⋆ doesn’t depend on R at all. (3)

Instead, f⋆ ∝ t2, and the wavevector k◦⋆ implies a characteristic buckling wave-

length ∼
√
Rt — a length scale that also emerged in Sec. 1.3! These thickness

scalings are characteristic of curved-shell buckling, and arise from the tradeoff

between stretch and bend that is necessarily involved. This tradeoff is ubiquitous

in shell mechanics, and is part of what makes it a rich and interesting subject :)

in to the δN1 expression, then rearrange for δε1.) Now, Λ kills the u part of δε1, so applying Λ
to δε1 and tracing gives one of the terms in (63) immediately. The other follows quickly from
applying Λ to the inverted stress-strain relation we found, given ∇ · δN1 = 0. It is not obvious
that (63) is a sufficient condition for compatibility.
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I should come clean about glossing some things:

1. A tacit assumption we made was that our buckling modes had to be oscil-

latory, rather than decaying (i.e. we looked at real kx, ky only). Was that

ok to assume? Not really, no. It is true that on a cylinder we will need to

have a periodic boundary condition in the azimuthal (x) direction, which

requires a real (and quantized) kx, but this does not constrain ky to be

real. And actually, for a radially free boundary, buckling indeed occurs at

an f⋆ that’s much smaller than (66), with a buckling mode that oscillates

but also decays exponentially away from the boundary; see Nachbar and

Hoff’s The buckling of a free edge of an axially-compressed circular cylindri-

cal shell (1962).12 However, for more conventional boundary conditions (e.g.

clamped), that does not happen; E.g. see the cylinder-buckling chapters in

Calladine’s Theory of Shell Structures, and look again at Fig. 14. So one

has to get stuck in the weeds with boundary conditions, which we avoided

completely! What we found is a ‘bulk’ instability, by which I mean that the

modes have a comparable amplitude over most of the shell, as opposed to

being exponentially suppressed in some regions relative to others; in some

setups this instability will occur first, and therefore be observed; in other

setups other instabilities will occur first instead.

2. Real shells almost always buckle at a significantly lower force than (66)

predicts, due to some combination of boundary effects and/or an acute sen-

sitivity to imperfections; this is still not fully understood, despite a lot of

work. Getting physically realistic buckling thresholds out of shell theory can

sometimes require more care than we’ve put in!

Exercise (Euler buckling): Find the buckling force f⋆ for a flat plate (κ̄ =

κ0 = 0), with a compressive force f applied at each end in the x direction, so

N0 = diag(−f/S, 0) where S is the length in the y direction. Assume translational

invariance in the y direction. Do not use an Airy stress function. You can use

(61) and (62) if you find the appropriate BCs, but an easier approach will be to go

back to (60), impose translational invariance there, and then crank the calculus-

of-variations handle. Consider first simply-supported BCs, then clamped BCs.

Which has the higher f⋆, and does that make sense intuitively? Compare the

thickness scalings of the f⋆ values and the wavelengths to the cylinder case.

12The modes in Fig. 2c of Lifting, Loading, and Buckling in Conical Shells (2023) are similar.

28



2 Appendix: Changes in metric and curvature

tensors up to second order in displacements

Consider an undeformed surface S, and a surface S ′ that is the result of deform-

ing S. The surface S has some metric tensor a and second fundamental form

(curvature tensor) κ. We also inscribe it with some coordinate system xα, which

we should think of as labels that material elements carry with them throughout

deformation. The metric a′ and curvature tensor κ′ of S ′ can then be expressed

with respect to the coordinate basis corresponding to xα, which also form a coor-

dinate system for S ′. When raising and lowering indices (which is just a notational

shorthand remember!), we will in this appendix always implicitly be using a to do

so, and as usual the upstairs components aαβ are defined via the matrix inverse:

aαγaγβ = δαβ .

If S is described by the 3D position vector R(xα), then

eα ≡ ∂αR, (67)

N̂ ≡ e1 × e2

|e1 × e2|
(68)

are respectively the coordinate basis vectors corresponding to the xα coordinates

and the unit normal, both on S. We have aαβ = eα · eβ and καβ = eβ · ∂αN̂ =

−N̂ · ∂αeβ. The latter, combined with the fact that ∂αN̂ is perpendicular to N̂

because N̂ is unit-length, quickly yields the Weingarten relation ∂αN̂ = κβαeβ.

Now, it’s useful to know how a′ and κ′ relate to a and κ. Let’s describe the

deformation by supposing that each material point in S is displaced by u and w,

respectively in the directions tangential and normal to S at that material point.

Thus, if S is described by the 3D position vector R(xα), then S ′ is described by

R′ = R+ uβeβ + wN̂ (69)

From (69), we can now calculate the coordinate basis vectors corresponding to

the xα coordinates on S ′:

e′
α ≡ ∂αR

′ = eα + ∂α(u
βeβ) + ∂α(wN̂ ). (70)

At this point, let’s recall that if ∇ denotes the standard covariant derivative on S,
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then ∇αu
γ = eγ ·∂α(uβeβ). (The relevant Christoffel symbols are those calculated

from a in the xα coordinates.) We’ve thus packaged the two tangential components

of ∂α(u
βeβ) nicely, but the normal component remains, and we have

e′
α = eα + eγ∇αu

γ + N̂
(
N̂ · ∂α(uβeβ)

)
+ ∂α(wN̂ ). (71)

We can improve this expression by using the definition of κ and the Weingarten

relation. After defining (for convenience) the linear-in-displacements tensors

dβα ≡ ∇αu
β + wκβα, (72)

ϕα ≡ καβu
β − ∂αw, (73)

it becomes

e′
α = eα + dβαeβ − ϕαN̂ . (74)

Thus

a′αβ = e′
α · e′

β = aαβ + dαβ + dβα + dσαd
σ
β + ϕαϕβ. (75)

Note that this expression is exactly quadratic in the displacements. If you want a

linear-in-displacements approximation, you just discard the last two terms. The

implicit ∝ w linear terms represent the key difference between shells and plates:

in shells a small normal displacement induces strain at leading order. Of all the

quadratic terms, often the only important one for buckling is (∂αw)(∂βw), which

captures the essence of shell buckling: out of plane deformation ‘uses up’ length

to relieve compressive stress.

Now let’s calculate

N̂ ′ ≡ e′
1 × e′

2

|e′
1 × e′

2|
(76)

in the same kind of way. To begin, note that at each point the pair of vectors e1dx
1

and e2dx
2 define the standard parallelogram area element: dA = |e′

1×e′
2| dx1dx2.

But we also have the ubiquitous expression dA =
√
det a′·· dx

1dx2, where a′·· is the

matrix of downstairs components. Comparing yields

|e′
1 × e′

2| =
√

det a′·· , (77)

which can be checked via brute-force tedium if desired. By the same argument

30



|e1 × e2| =
√
det a··, so (68) yields

eα × eβ = N̂ ϵαβ
√

det a··. (78)

where ϵ12 = −ϵ21 = 1, ϵ11 = ϵ22 = 0. The above equation quickly yields |e1×e2| =
1/
√
det a·· after defining eα = aαβeβ as usual, which in turn means we can write

N̂ = e1 × e2
√
det a··. This form in turn yields

eα × N̂ = ϵσαe
σ
√

det a·· (79)

directly.

Combining (74), (78), and (79), we can now find

e′
1 × e′

2 = (e1 + dτ1eτ − ϕ1N̂ )× (e2 + dσ2eσ − ϕ2N̂ ) (80)

= ((δτ1 + dτ1)eτ − ϕ1N̂ )× ((δσ2 + dσ2)eσ − ϕ2N̂ ) (81)

=
√

det a··

(
(δτ1 + dτ1)(δ

σ
2 + dσ2)ϵτσN̂ − (δτ1 + dτ1)ϕ2ϵγτe

γ + (δσ2 + dσ2)ϕ1ϵγσe
γ
)

=
√
det a··

(
det(I + d ·

·)N̂ + (ϕγ + ϕγd
β
β − ϕβd

β
γ)e

γ
)
, (82)

where d ·
· is the matrix of d’s mixed components. Combining with (77), we at last

have

N̂ ′ ≡ e′
1 × e′

2

|e′
1 × e′

2|
=

√
det a··√
det a′··

(
det(I + d ·

·)N̂ + (ϕγ + ϕγd
β
β − ϕβd

β
γ)e

γ
)
. (83)

Note that the prefactor is the reciprocal of the deformation’s area scale factor.

To compute κ′αβ, we need to take another derivative of (74). It will be con-

venient to temporarily use local Cartesian coordinates, in which ∂βeα = −καβN̂ .

Then, remembering ∂αN̂ = κβαeβ (Weingarten), we find

∂βe
′
α = ∂β

(
eα + dγαeγ − ϕαN̂

)
(84)

= ∂β

(
(δγα + dγα)eγ − ϕαN̂

)
(85)

= eγ∂β(δ
γ
α + dγα)− (δγα + dγα)κγβN̂ − N̂∂βϕα − ϕακ

γ
βeγ . (86)
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Dotting this with −N̂ ′ yields

κ′αβ = −N̂ ′∂βe
′
α (87)

=

√
det a··√
det a′··

(
det(I + d ·

·)[(δ
γ
α + dγα)κγβ + ∂βϕα]

+ (ϕγ + ϕγd
σ
σ − ϕσd

σ
γ)[−∂βdγα + ϕακ

γ
β]

)
, (88)

where we’ve used that δγα has zero derivative. In our local Cartesian coordinates,

the partial derivatives above are also covariant derivatives, so we can write the

above as

κ′αβ = −N̂ ′∂βe
′
α (89)

=

√
det a··√
det a′··

(
det(I + d ·

·)(καβ + dγακγβ +∇βϕα)

+ (ϕγ + ϕγd
σ
σ − ϕσd

σ
γ)(ϕακ

γ
β −∇βd

γ
α)

)
. (90)

Now the above expression is fully tensorial, so since it holds in one (local Cartesian)

coordinate system, it holds in any coordinate system! Remember that there are

displacements also hidden in
√
det a′··, so κ

′ is not just cubic in displacements. In

fact, it’s probably best to use (75) to write the prefactor in (90) as

√
det a··√
det a′··

= det
(
I + d ·

· + (d ·
· )

T + (d ·
· )

Td ·
· + ϕ· ⊗ ϕ·

)−1/2
. (91)

Let’s now expand κ′ up to quadratic order in displacements. First, the above

prefactor: The matrices d ·
· and (d ·

· )
T have the same trace and determinant.

Moreover, for 2 × 2 matrices, det(I + M) = 1 + trM + detM = 1 + trM +

(tr(M)2 − tr(M2)) /2. Using these identities, we get det(I+d ·
·) = 1+tr d ·

·+det d ·
·

and, from (91),

√
det a··√
det a′··

≈
(
1 + 2 tr d ·

· + (tr d ·
·)
2 + 2det d ·

· + |ϕ|2
)−1/2

(92)

≈ 1− tr d ·
· + (tr d ·

·)
2 − det d ·

· − |ϕ|2/2 (93)
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to quadratic order in displacements. Thus

κ′αβ ≈ καβ + dγακγβ +∇βϕα − |ϕ|2

2
καβ + ϕγ(ϕακ

γ
β −∇βd

γ
α) (94)

to quadratic order in displacements.

We can now approximate the curvature tensor of S ′ similarly. In general for

a matrix M , we have the expansion (I +M)−1 = I −M +M2 −M3 + . . ., which

leads to (A +M)−1 = A−1 − A−1MA−1 + A−1MA−1MA−1 − . . ., which we can

apply to (75) to find

(a′−1)αβ ≈ aαβ − dαβ − dβα − ϕαϕβ + dασd
σβ + dασd

βσ + dβσd
σα (95)

to quadratic order in displacements. Multiplying onto (94) yields the approximate

primed shape operator

(a′−1)ατκ′τβ ≈ καβ +∇βϕ
α − |ϕ|2

2
καβ − ϕγ∇βd

γα − dαγκγβ − (dατ + dτα)∇βϕτ + dασd
στκτβ,

(96)

whose eigenvalues are the curvatures of S ′ to quadratic order in displacements etc.

Note: Throughout this appendix, the metric used to raise and lower indices

and define the covariant derivative has been that of the un-perturbed shell. In

general this might not be the elastic reference configuration.
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