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There’s a distinction between an active transformation and a passive one. In

an active transformation, the actual value of a field at a given point in space or

spacetime will change in general — you actually transform the field into a different

field. In a passive transformation, you are not actually transforming any fields,

you are merely changing the coordinate system you use to label points in your

space, and if the field is described by a function of the coordinates, then that

function changes so that you have a new function of the new coordinates that

describes the same physical field as the old function of the old coordinates. I’ll

argue that this difference affects how we think about what theories are allowed,

so it’s important imo!

Figure 1: Contour plots of temperature T field (color), with active and passive
rotations applied. We have the original temperature function T (x). After an

active transformation, we have a new field described by T̃ (x) ≡ T (Rx) where R
is a rotation matrix that rotates a vector 45◦ clockwise. Doing a passive transfor-
mation instead, we have the same physical field, but we have to describe it using
a new function of the new coordinates r: T̀ (r) ≡ T (Rr). In this case the two

functions T̃ (·) and T̀ (·) are identical, which shows how easy it is to get confused!

As a concrete example, fig. 1 shows both types of transformation applied in

the case of the temperature (scalar field) whose value is represented by color.

Hopefully you agree that the two cases are different! If you place your hot friend
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at the location that has coordinates (3, 0) in the first picture, then after a passive

transformation your friend will be exactly as hot as they were before because all

you’ve done is call their location by a different name, whereas if the temperature

field undergoes an active transformation, your friend may not be so hot anymore

because the temperature at their location has actually changed! The two transfor-

mations lead to two different physical situations, because active transformations

are transformations of physical fields, whereas passive transformations are merely

relabellings of points, and point labels are completely arbitrary and unphysical.

This often comes up in the context of Lorentz transformations in relativistic

field theories (quantum or classical). People often seem to gloss or omit the active-

vs-passive distinction though, e.g. the wikipedia page on Lorentz Invariance [1],

the popular books by Peskin+Schroeder [2], Srednicki [3], Zee [4], Ryder [5], and

Kleinert [6], and the lecture notes by Gripaios [8]. Tong’s excellent lecture notes [7]

are better than most on this point, but still slip up in a few parts. Let’s discuss

the sort of example that courses/books often have, first in an active way, then in

a passive way. . .

Consider showing that the Klein-Gordon equation1

∂µφ η
µν ∂νφ+ kφ = 0 (1)

is ‘Lorentz invariant’, where φ is a scalar field, k is a constant, and η is the metric

tensor of Minkowski spacetime. Here, ∂µ ≡ ∂/∂xµ where xµ is some coordinate

system. What I think we mean by Lorentz invariance here is that if we have

some field φ that solves the KG equation, then if we perform an active Lorentz

transformation on φ to produce a new field φ̃, then φ̃ will also be a solution.

Now, an active Lorentz transformation of the old field φ(xa) produces a new field

described by φ̃(xa) ≡ φ(Λa
bx
b), where Λa

b is a constant Lorentz transformation

matrix, analogously to fig. 1. Using chain rule,

∂µφ̃(xa) = ∂µφ(Λa
bx
b) = Λν

µ∂̄νφ(Λa
bx
b) (2)

where ∂̄ is a new operator that just differentiates a function with respect to its

1The KG equation corresponds to the action S =
∫

[φ̇2−|c∇3Dφ|2−kφ2]dV dt being station-
ary. Something nice I just realised is that this is basically the energy you would write down for a
drum skin vibrating (transversely) if it is stuck onto an elastic substrate (which will penalise dis-
placement quadratically), as long as you interpret c as

√
membrane stress/mass per unit area.

Nice classical example of something that actually obeys the KG equation :). I later found Gravel,
Gauthier - Classical applications of the Klein–Gordon equation, which discusses similar things.
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input arguments (‘slots’), rather than with respect to xµ. Eq. 2 is just like in single-

variable calculus where if you have h(x) ≡ f(g(x)) then h′(x) = g′(x)f ′(g(x)),

where the function f ′ is the derivative of f with respect to its argument. So we

have

∂µφ̃(xa) ηµν ∂νφ̃(xa) +kφ(xa) = Λρ
µ∂̄ρφ(Λa

bx
b)ηµνΛσ

ν ∂̄σφ(Λa
bx
b) +kφ(Λa

bx
b). (3)

Now we use the definitional property of the Lorentz transformation matrices

Λρ
µη

µνΛσ
ν = ηρσ to get

∂µφ̃(xa) ηµν ∂νφ̃(xa) + kφ(xa) = ∂̄ρφ(Λa
bx
b)ηρσ∂̄σφ(Λa

bx
b) + kφ(Λa

bx
b). (4)

Finally, we note that because φ(xa) satisfies the KG eq. (1) in which ∂µ ≡ ∂/∂xµ,

we actually have ∂̄µφ η
µν ∂̄νφ + kφ = 0, no matter what value you feed into the

left-hand side as a function argument! Thus the right-hand side of eq. 4 is zero

and we have shown that φ̃ is a solution of the KG equation:

∂µφ̃(xa) ηµν ∂νφ̃(xa) + kφ(xa) = 0. (5)

Now, lots of lecturers showing results like the above will write down strange

things like “xa → x′a = Λa
bx
b”, which looks like a change of coordinates rather

than anything active. The accompanying text is also often vague and passive-

sounding. The problem with this imo is that the KG eq. (1) is manifestly invari-

ant under coordinate/passive transformations, because it is fully tensorial, written

with correct upstairs and downstairs indices and whatnot! ANY genuine tensorial

scalar is automatically invariant under ALL coordinate transformations! So the

result in the passive case is kind of trivial!

I believe the reason people get away with being sloppy with Lorentz invariance

is that the active transformations that we desire symmetry under happen to also

be transformations that preserve dot products of 4-vectors. Thus if you just

apply the transformation passively to the coordinates, the components of the

metric — which transform under most coordinate transformations — happen to

be unchanged. Thus the passive calculation looks like the active case where you

don’t transform the metric components. You could certainly write down theories

that drive a wedge between the two transformation types, e.g. an equation like

∂µφC
µν ∂νφ+ kφ = 0 (6)
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where C is some anisotropic tensor field. This won’t have active-transformation

Lorentz symmetry, but it’s fully tensorial so it still doesn’t care about coordi-

nate choices! If you’re doing relativistic fluid dynamics or something I imag-

ine an equation like this could totally come up! A similar example is given by

https://physics.stackexchange.com/a/568141 .

So why do we even need active-transformation Lorentz invariance in our the-

ories at all!? Here’s my attempt at a coherent story of relativity and Lorentz

invariance:

1. An inertial observer is a point that moves along through space over time

without experiencing net forces. Any observer moving at constant veloc-

ity relative to an inertial observer is also an inertial observer, consistent

with Newton’s first law. Because of Maxwell’s equations/speed of light

the same in any inertial frame/Einstein said so, a light pulse emitted at

some event and detected at some second event must be calculated by all

inertial observers to propagate between the two at speed c. Thus, all iner-

tial observers must agree on a special number defined by any two events:

∆s2 = c2∆t2−∆x2−∆y2−∆z2, where each inertial observer measures their

own t, x, y, and z with a co-moving synchronised network of stopwatches

and rulers (which can be set up via light-based communication as long as

there’s no gravity).

2. Each inertial observer could in principle make many (t, x, y, z) measure-

ments, so they can assign a unique label to every point/event in space and

time.

3. The agreement between all inertial observers on ∆s2 despite their assigning

of different labels (t, x, y, z) to events leads us to a hypothesis: Actually all

observers live on a single physical 4D spacetime manifold where ∆s2 cor-

responds to tensorial coordinate-independent quantity, while each inertial

observer’s (t, x, y, z) measurements just correspond to different coordinate

choices for the manifold. The resemblance of the ∆s2 quantity to Pythago-

ras’s theorem in Euclidean 3D space inspires us further: we suppose that the

inertial observers’ (t, x, y, z) measurements correspond to Cartesian coordi-

nates in which the manifold has metric components ηµν = diag(1,−1,−1,−1).

This requires that the manifold is flat, and implies ∆s2 is a squared space-

time interval.
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4. This gives us all the passive coordinate transformation properties in SR: we

have the metric, everything physical must be a tensor because coordinate

choices are completely arbitrary, and therefore upstairs-downstairs correct

etc. This kind of reasoning ends pretty abruptly here (I think?) — Einstein

has given us a manifold and a metric but nothing else (for the purposes of

this note!).

5. Any tensorial expression respects the passive symmetry we just arrived at,

so this can’t be the same as the Lorentz invariance we look for in fundamen-

tal field theories. That’s a good thing because non-fundamental theories

described by things like eq. 6 should be allowed!

6. So where’s this extra active Lorentz invariance coming from in the funda-

mental field theories we try to write down? I think it comes from an extra

assertion that we expect fundamental theories to have an active symmetry

that matches the geometric symmetry of the manifold on which they live.

E.g. space is rotationally symmetric, there’s no preferred direction in space,

so in any fundamental theory all physical rotations of a field configuration

should be equally permissible. In the case of Mikowski spacetime the rele-

vant symmetry group is the Lorentz group2. In short, we want fundamental

theories to have the same symmetries as spacetime itself. So it’s no coinci-

dence that the distinction between active and passive slips under the radar

so easily!

7. What changes in this story if we are doing GR, on a curved manifold that in

general has no geometric symmetry? One thing you have to do is replace all

partial derivatives by covariant derivatives, but another important change is

that there certainly can be privileged directions on the manifold (e.g. a high

curvature direction), and there’s no reason in general to expect any special

active symmetry of a field theory that I can see? So I guess we just give

up on any kind of active Lorentz symmetry? Relatedly, I guess(?) in GR

you can have new kinds of Lagrangian terms in fundamental theories like

Rabcd∇aφ∇bψ∇cφ∇dψ where the Reimann tensor R encodes the manifold’s

curvature.

If you think I’m wrong about any of this, or can shed any more light, please

get in touch!

2Actually it’s the Poincaré group really.
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