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I’ve been thinking a bit about complex numbers and why we use them. Com-

plex numbers are just arrows in the 2D plane. They are thus essentially just

2D vectors in the 2D Euclidean plane, with some extra rules operations on them

defined on top of the usual ones (addition, dot product etc), which turn out to

be very useful. The fact that these extra operations sometimes involve rotations

means that complex numbers provide a convenient way of representing 2D ro-

tations (and hence oscillations/sinusoids etc, which are projections of rotations).

Quaternions with zero real part have the same kind of relationship to 3D rota-

tions, hence their common use in graphics and similar.

This means that any time we write complex numbers down, we’re really work-

ing with some 2D vectors with some fancy operations. This means we should be

able to translate between the two languages if we think a bit, because they are

really doing the same kind of thing! We’ll use the symbol ∼ to represent corre-

spondence/translation between the two representations.

Figure 1: A complex number z1, and its corresponding vector z1. We write their
correspondence as z1 ∼ z1.

Let’s define two complex numbers z1 = a + bi and z2 = c + di, and two 2D

vectors that correspond to these z1 = ax̂ + bŷ and z2 = cx̂ + dŷ. The complex

conjugate operation is as usual defined as z∗1 ≡ a− bi, which we immediately see

is equivalent to a reflection through the x-axis, i.e.

z∗ ∼

(
1 0

0 −1

)
z. (1)
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Now, z1 + z2 ∼ z1 + z2 is fairly immediate. Then it’s straightforward to check

that z1 · z2 = ac + bd = (z∗1z2 + z1z
∗
2)/2. And this then makes it straightforward

to check that |z1 + z2| ≡
√

(z1 + z2)(z∗1 + z∗2) = |z1 + z2| as it had better be!

What about z1z2 in vector language? Let’s define θ1 ≡ arg(z1). Then, a

good exercise is to use the form z = |z|eiθ to (slightly tediously) prove z1z2 =

ac−bd+(bc+ad)i (hint: use eiθ = cos(θ)+ i sin(θ) and some basic trig identities).

While doing that, you’ll find

z1z2 = |z1||z2|
[

cos(θ1) cos(θ2)− sin(θ1) sin(θ2) (2)

+ (sin(θ1) cos(θ2) + cos(θ1) sin(θ2)) i

]
, (3)

and thus, translating to vector form,

z1z2 ∼ |z1||z2|
[

(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) x̂ (4)

+ (sin(θ1) cos(θ2) + cos(θ1) sin(θ2)) ŷ

]
. (5)

We can write this fully vectorially as

z1z2 ∼ ((z1 · x̂)(z2 · x̂)− (z1 · ŷ)(z2 · ŷ)) x̂ (6)

+ ((z1 · ŷ)(z2 · x̂) + (z1 · x̂)(z2 · ŷ)) ŷ, (7)

but that’s really not very illuminating. But we can also write it as

z1z2 ∼ |z1||z2|
[

cos(θ1 + θ2)x̂ + sin(θ1 + θ2)ŷ

]
, (8)

which makes manifest the usual picture for multiplying complex numbers: the

new magnitude is the product of the old two, and the new argument is the sum

of the old two. The operation on the argument is clearly a particular rotation in

the 2D plane, so we should search for a form that makes that explicit! We can do

that just by factorising eq. 7 to find

z1z2 ∼

(
z2 · x̂ −z2 · ŷ
z2 · ŷ z2 · x̂

)
z1 =

(
cos θ2 − sin θ2

sin θ2 cos θ2

)
|z2| z1 (9)

where the matrix is an anticlockwise rotation by θ2 combined with a multiplica-
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tion by |z2|, again fitting with the usual picture. Note that this rotation really

does care which directions in the 2D plane are your x̂ and ŷ directions, which is

partly why the complex number representation is nice - it hides this ugliness!

What about the ‘2D cross product’,
2D

×, of z1 and z2? By that I mean

z1

2D

× z2 = (z1 · x̂) (z2 · ŷ)− (z1 · ŷ) (z2 · x̂) = εjkzj1z
k
2 (10)

where

ε12 = −ε21 = 1, ε11 = ε22 = 0, (11)

and we’ve used the Einstein summation convention. This is equivalent to thinking

of z1 and z2 as 3D vectors, taking their usual 3D cross product and then extracting

just the z-component. From the middle expression in eq. 10 we quickly find

z1

2D

× z2 = |z1||z2| sin(θ2 − θ1), (12)

as is familiar from the 3D cross product. Note the above expression equals the

area of the parallelogram with z1 and z2 as sides. From the final expression in

eq. 10 we quickly find something that’s in a way nicer:

z1

2D

× z2 = ad− bc =
i

2
(z1z

∗
2 − z∗1z2) . (13)

So overall I’d say that the dot and cross product expressions are a tad more

complicated translated into complex numbers and their conjugates. But z1z2 is

far, far nicer than the corresponding bulky vectorial expressions shown in eqs 8 and

9. Thus, for finding things like dot and cross products, complex numbers aren’t

particularly slick or helpful, but if you want to keep track of phase (i.e. angle

relative to the x-axis) that is changing or calculated from some combination of

quantities with their own phases, complex numbers provide an extremely elegant

and compact way to do this via multiplication. We can summarise our results as
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follows, where the matrix multiplications are applied to x- and y-components:

Complex numbers Relationship Vectors

z = a+ bi = |z|eiθ ∼ z = ax̂ + bŷ

z∗ ∼

(
1 0

0 −1

)
z

z1 + z2 ∼ z1 + z2

(z∗1z2 + z1z
∗
2)/2 = z1 · z2

|z1 + z2| = |z1 + z2|

z1z2 ∼

(
cos θ2 − sin θ2

sin θ2 cos θ2

)
|z2| z1

i (z1z
∗
2 − z∗1z2) /2 = z1

2D

× z2
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