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Let’s think of integration in a Riemann-like way: We have a function f(x),

and you take a particular interval [a, b] of the variable x, with a < b, and split

that interval into N subintervals labelled by i, each having width ∆x = (b−a)/N

and (say) central x value of xi, and then the integral

∫
[a,b]

f(x) dx = lim
N→∞

N∑
i=1

f(xi) ∆x. (1)

This gives the (signed) area between the graph of f(x) and the x−axis, between

a and b. The accompanying picture is the following (from Wikipedia):

Figure 1

The fundamental theorem of calculus is very intuitive from this picture if you

think about adding/subtracting a rectangle at the right-hand/left-hand end of the

interval [a, b]. It essentially says, in my notation,

d

da

∫
[a,b]

f(x) dx = −f(a), (2)

d

db

∫
[a,b]

f(x) dx = f(b). (3)

Often in fact only the second of those equations is called the fundamental theorem

of calculus, and the first is considered something to be straightforwardly derived

with what follows, but I like to think of the two statements arriving together,

since they are clearly the same kind of idea, and could be derived in the same

way.
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Anyway, if you can find an antiderivative of f , i.e. a function g(y) such that

g′(y) = f(y), then ∫
[a,b]

f(x) dx = g(b) + constant, (4)

because the right hand side is then a function of b that has the same derivative

with respect to b as the function on the left hand side, so they can only differ by

a constant. That’s because the difference of the two functions has zero derivative,

and the only function with zero derivative is a constant (intuitive, but see the

‘Zero Velocity Theorem’ at math.stackexchange 91561). In our case the constant

must equal −g(a), because setting b = a we must have
∫
[a,a]

f(x) dx = 0.

Now, the way I like to think about things, ∆x and its infinitesimal limit dx

are both always positive quantities; they are unsigned widths of intervals. There

is no directionality in the integral - we’re not integrating ‘from left to right’ as

opposed to ‘right to left’ of anything like that; in fact we could perform the sum

over rectangles in any random order we like. Thus, things like (as people often

write)
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx are in a sense notational shorthands in my way

of thinking, and are arguably quite confusing or misleading. I’ve been especially

confused before in the context of line integrals around a closed loop.

The ‘directionality’ only comes in when we start writing down antiderivatives,

because they are directional; an antiderivative tells you how quickly a function

changes as its argument increases. To illustrate a bit, let’s apply my way of

thinking to integration by substitution.

We want to calculate
∫
[a,b]

f(x) dx where a < b as before, and we have some

other function u(x) that is invertible in our interval (at least in principle) to get

x(u). Now, in my approach∫
[a,b]

f(x) dx =

∫
[c,d]

f(x(u))

∣∣∣∣dxdu

∣∣∣∣ du, (5)

where c < d, because under the integral signs I take dx and du to always be

positive. So

c, d =

u(a), u(b) if u(a) < u(b)

u(b), u(a) if u(a) > u(b).
(6)

Now lets assume that sign(dx
du

) is constant over the interval in question. Thus∫
[c,d]

f(x(u))

∣∣∣∣dxdu

∣∣∣∣ du = sign

(
dx

du

) ∫
[c,d]

f(x(u))
dx

du
du. (7)

2



Now suppose we can actually evaluate the integral on the RHS using an antideriva-

tive, by finding a function g(u) such that g′(u) = f(x(u)) dx
du

. Then putting it all

together we find∫
[a,b]

f(x) dx = sign

(
dx

du

)
(g(d) − g(c)) (8)

=

sign
(
dx
du

)
(g(u(b)) − g(u(a))) if u(a) < u(b)

sign
(
dx
du

)
(g(u(a)) − g(u(b))) if u(a) > u(b)

(9)

But if sign
(
dx
du

)
= 1 then u(a) < u(b), and if sign

(
dx
du

)
= −1 then u(a) > u(b).

Thus ∫
[a,b]

f(x) dx = g(u(b)) − g(u(a)) . (10)

Now, what if sign(dx
du

) is not constant over the integration interval? Well that’s

fine; we just split the integration interval into sub-intervals, each with a constant

sign(dx
du

). Then eq. 10 holds for each sub-interval, and when we sum over the

sub-intervals we find that eq. 10 in fact holds for the overall integral ¨̂ .

The common way of writing all this is∫ b

a

f(x) dx =

∫ u(b)

u(a)

f(x(u))
dx

du
du (11)

=

∫ u(b)

u(a)

g′(u) du (12)

=
[
g(u)

]u(b)
u(a)

(13)

= g(u(b)) − g(u(a)). (14)

I see this as a helpful shorthand and handle-turning method of getting the correct

answer, without having to go through the hassle of my approach. That’s good,

and it should be used! But I find my approach helpful to think about when I get

confused about ‘integrating in a particular direction’. Basically by the time you

get down to integrating a function of a variable over some interval, in an important

sense that phrase doesn’t actually mean anything! Of course when doing a line

integral the function may be e.g. a dot product with a tangent vector that points

in a particular direction; that’s fine and represents a real directionality, but it’s a

different thing to the fictional directionality that the common shorthand notation

sometimes seems to imply.
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My way of thinking also comes up when thinking about e.g. area integrals via

a substitution, where writing down the new area element in my way of thinking

involves the modulus of the determinant of the Jacobian, and the limits are ar-

ranged in ‘increasing size’ order as here; whereas again conventionally no modulus

is involved, and the upstairs/downstairs integration limit notation is used without

the size ordering.

P.S.

Here’s a cool little general result in closing (I saw it on Twitter, I think from Jim

Al-Khalili but I’m not certain):∫ b

a

f(a + b− x) dx =

∫ b

a

f(x) dx. (15)

Amazingly, the proof of this cute thing is immediate upon just using the substitu-

tion u = a+ b−x and applying the usual ‘shorthand’ approach for integral limits

and substitution that we’ve been discussing!

P.P.S.

Since we’re on the topic of integration, I recommend this cool recent paper ‘How

to (Path-)Integrate by Differentiating’: https://arxiv.org/pdf/1507.04348.pdf

I do think they unhelpfully gloss their statement just under eq. 16 that ∂−1ε gives

the antiderivative of the thing to its right. I think it essentially must follow from

their statement just above eq. 5 that in general f(∂ε) should be interpreted as a

function on the spectrum of ∂ε, which has eigenfunctions that are exponentials.

So I guess the point is you write whatever is to the right of your f(∂ε) as a Fourier

transform, and then use their eq. 5, and then you see that the result is that the

thing to the right has been anti-differentiated (and I guess the constant chosen

to be such that the Fourier transform of the anti-derivative, which we just wrote

down, actually exists).
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