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Every object has a scalar field associated with it called a distance function

(DF), which equals the shortest distance from each point in space to the object.

I think they’re quite beautiful things, and they’re extremely powerful tools in

simulations (meshing, tracking interfaces) and graphics (ray marching, defining

complex objects with simple expressions). Check out Inigo Quilez’s website and

YouTube channel for lots of cool examples! To give a flavour, here’s a contour

plot of one of Inigo’s:

Figure 1: Contour plot of distance ϕ from a heart (purple), coloured by ϕ with
white = 0.

Let’s think in 2D (everything would generalise to higher dimensions straight-

forwardly). The DF ϕ of a curve C, satisfies the following special case of an

eikonal equation:

|∇ϕ| = 1 , (1)

with the boundary condition ϕ = 0 on C. To me this equation always seemed

plausible but not obviously correct, so I want to derive it. Hopefully you’ll at least
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agree with me going in that it’s fairly intuitive that a unique distance function

does exist, because the question ‘how far am I from C?’ always has a single-valued

answer, no matter where you’re standing.

Figure 2

The distance function ϕ(x) is a scalar field that equals the shortest distance

from x to C. Let’s think about some particular point x = p. The shortest curve

between two points is a straight line, so if the point on S that’s closest to p is q,

the shortest distance from p to S must be the length of the straight line from p

to q. Also, that line must meet C at a right angle, because otherwise there would

be a point q′ on C that’s closer to p than q is, by the triangle inequality (fig. 3a).

Let’s call the unit tangent to that line t̂.

Figure 3

Now, suppose we move from p towards q by some amount to arrive at p′ =

p+ λt̂. Must the closest point on C to p′ also be q? Yes! Otherwise there would

be a point q′′ on C that closer to p than q is, by the triangle inequality (fig. 3b).

Thus, the distance ϕ(p′) = ϕ(p) − λ, so letting λ be infinitesimal we find the

derivative of ϕ in the t̂ direction: ∇ϕ · t̂ = −1.

Let’s also find ∇ϕ · v̂, the component in the perpendicular direction. To get

going, here’s a sketch of what C looks like locally near q, where we’ve invented

some x and y coordinates with the y-axis aligned along t̂. Locally, C is given to

leading order by some quadratic y = ax2 (parabola) with no linear term because,

2



Figure 4

as discussed, C must be perpendicular to t̂ at q. By Pythagoras, the squared

distance s from some point (X, Y ) to the point (x, ax2) on the parabola is

s = (X − x)2 + (Y − ax2)2 , (2)

so the point on the parabola closest to the point (X, Y ) must have x = xc satis-

fying1

ds

dx

∣∣∣∣
xc

= 0 (3)

=⇒ X + 2aY xc − 2a2x3
c − xc = 0 . (4)

By construction, at p we have X = 0 and the closest point is q = (0, 0), and

indeed xc = 0 solves the cubic in that case. Fixing Y and considering xc as a

function of X, we can differentiate the cubic implicitly to find

dxc

dX
=

1

1 + 6a2x2
c − 2aY

(5)

=⇒ dxc

dX

∣∣∣∣
xc=0

=
1

1− 2aY
. (6)

Thus, upon perturbing X infinitesimally from 0 to δX as shown in the sketch, we

have

δxc =
δX

1− 2aY
(7)

to leading order. It is then easy to check from eqn 2 that s(xc) is only perturbed

by O(δX2) terms, as is the distance ϕ =
√
s(xc). Thus, ϕ does not change to

1This cubic is exactly what you solve to find the distance function of a parabola, by the way.
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linear order if p is perturbed in the v̂ direction, i.e. ∇ϕ · v̂ = 0. If you want, it’s

straightforward to go back and check that including higher-than-quadratic order

terms in the local power series y(x) does not change this moderately intuitive

conclusion.

Phew! Now, t̂ and v̂ form a basis, so we have actually calculated ∇ϕ in its

entirety:

∇ϕ = −t̂. (8)

This means that if you’re at p and you want to decrease the distance to C as

quickly as possible you should walk straight towards q, the closest point on the

surface. Or, to flip it round, ϕ equals the shortest distance to C and −∇ϕ is the

direction of the straight line you should walk the distance ϕ along to reach C as

quickly as possible. Eqn (8) immediately implies the eikonal eqn (1), since t̂ is

unit length :)

It’s nice to check that the eikonal eqn agrees with the above observation

that walking along ∇ϕ should always mean walking in a straight line. To do

so, we ask ‘how does ∇ϕ change if we move by a tiny δx along ∇ϕ’? We

can calculate this change just using the grad of each component of ∇ϕ, find-

ing δ∂iϕ = δx(∂jϕ)∂j(∂iϕ). This quantity equals 0, as you find quickly if you take

∂j of the eikonal eqn (1) and use the symmetry of 2nd partial derivatives. So as

we’d hope, every little step you take along ∇ϕ brings you to a new point at which

∇ϕ is the same as the point you were at before.

This straight lines thing should make one think of the method of characteris-

tics, and indeed our eikonal equation (1) has characteristics that are straight lines,

as Zhao says just above eqn (2.9) in A fast sweeping method for eikonal equations.

They are exactly the straight lines we’ve drawn and discussed already, which you

walk along to get from p to C as fast as possible. Eikonal equation characteristics

are also called ‘rays’ because that’s exactly what rays in optics are. More gen-

eral eikonal equations have a rhs ̸= 1, which results in curved characteristics; see

for example the nice paper Wavefronts and solutions of the eikonal equation by

Nowack. That paper (p.56, top-right) makes clear that the characteristics x(τ)

have tangent vectors that equal ∇ϕ for our case (u = 1, T = ϕ); in other words

the straight characteristics are the integral curves of the vector field ∇ϕ.

We’ve explained why a DF satisfies the eikonal eqn (1), but what about the
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inverse question: If I’ve found a function ϕ with |∇ϕ| = 1 that has ϕ = 0 on C,

can I be sure that that ϕ is in fact the DF of C? Only as long as you solved the

eqn in a careful way! As fig. 1 demonstrates, there will generally be some kinks

in the solution, because if you start solving the PDE locally from C using the

method of characteristics, eventually characteristics meet and the solution ϕ has

kinks at these points. Technically you get something called a ‘viscosity solution’ —

the name comes from the idea that you can regularize the problem by including a

small viscosity term (2nd derivatives) in the equation, and then the kinky solution

is the viscosity → 0 limit of the regularized solution. There are highly technical

proofs of the uniqueness of viscosity solutions2, but I don’t have much intuition

for them, sadly. The fact that in general the solution necessarily has some kinks is

a real pain, because there are infinitely many (Lipshitz-)continuous solutions that

have kinks. To demonstrate, consider a 1D version of the problem: Solve |ϕ′| = 1

with BCs ϕ(0) = ϕ(1) = 0. There are all sorts of kinky zig-zagging functions ϕ

that satisfy this, but only the solution ϕ = 1 − |x| is the distance function for

the set {0, 1}. Thankfully, if you solve by propagating ‘characteristics’ in from

the two endpoints at equal speeds and stopping when they meet, this is exactly

the solution you get — but the point is that just saying ‘we’re totally chill about

kinks’ goes too far, because that would allow infinitely many solutions.

Really what we have to do is think about solving the PDE — and this is

required for designing numerical methods too — in such a way that information

propagates in particular fashion that ensures the resulting solution is the distance

function solution. Hence the word ‘causality’ often comes up, and people use

‘upwind’ numerical schemes etc. So in some sense the bottom line is that there

are not unique solutions to the eikonal eqn (1), but there are ways to characterise

the single solution that is the distance function, and to accordingly devise schemes

that find that particular solution. Calder – Lecture notes on viscosity solutions

(2018) seems to be very good on this stuff.

2Ishi – A Simple, Direct Proof of Uniqueness for Solutions of the Hamilton-Jacobi Equations
of Eikonal Type.
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